Mom's Story

A discussion about Mom's Story and MS…

Archive for the tag “MSFocus”

Brain-training Video Games May Help MS Patients

A new study suggests that playing a certain kind of video game strengthens neural connections in the brains of people with multiple sclerosis, improving cognitive abilities. Researchers hope to study whether the plasticity induced by video games in MS patients is linked to improvements in other aspects of their daily lives. They also plan to look at how the video game can be integrated into a rehabilitation program.
Researchers, led by Dr. Laura De Giglio, from the Department of Neurology and Psychiatry at Sapienza University in Rome, studied the effects of a video game-based cognitive rehabilitation program on the thalamus in patients with MS. They used a collection of Nintendo video games, called Dr. Kawashima’s Brain Training, which train the brain using puzzles, word memory and other mental challenges.
Twenty-four MS patients with cognitive impairment were randomly assigned to either take part in an eight-week, home-based rehabilitation program — consisting of 30-minute gaming sessions, five days per week — or be put on a wait list, serving as the control group. Patients were evaluated by cognitive tests and by 3-Tesla resting state functional MRI at baseline and after the eight-week period. At follow-up, the 12 patients in the video-game group had significant increases in thalamic functional connectivity in brain areas corresponding to the posterior component of the default mode network, which is one of the most important brain networks involved in cognition.
The modifications in functional connectivity shown in the video game group after training corresponded to significant improvements in test scores assessing sustained attention and executive function. The results suggest that video-game-based brain training is an effective option to improve cognitive abilities of patients with MS.

Study suggests possible inside-out origin for MS

A new study suggests an inside-out theory of multiple sclerosis in which the disease may be triggered by the death of brain cells that make the insulation around nerve fibers, according to a new study from Northwestern Medicine and the University of Chicago researchers. Creating a mouse-model of progressive MS, scientists also used a specially developed nanoparticle that prevented MS even after the death of those brain cells.
The new study shows the possibility that MS can begin from the inside out, in which damage to oligodendrocytes in the central nervous system can trigger an immune response directly. Oligodendrocytes can possibly be destroyed by developmental abnormalities, viruses, bacterial toxins or environmental pollutants. Oligodendrocytes are responsible for the maintenance of myelin. If they die, the myelin sheath falls apart. The death of these cells can activate the autoimmune response against myelin, which is the main feature of MS. The inside-out hypothesis suggests that when myelin falls apart, the immune system interprets the products of its degradation as foreign bodies or antigens, erroneously viewing them as invaders and beginning a full-scale attack on myelin, initiating MS.
“Protecting oligodendrocytes in susceptible individuals might help delay or prevent MS from initiating. It’s likely that therapeutic strategies that intervene early in the disease process will have greater impact,” said Brian Popko, the Jack Miller Professor of Neurological Disorders at the University of Chicago and one of the lead investigators in the study.
The scientists also developed the first mouse model of the progressive form of the autoimmune disease, which will enable the testing of new drugs against progressive MS. In the study, nanoparticles creating tolerance to the myelin antigen were administered and prevented progressive MS from developing. The nanoparticles are being developed for clinical trials that could lead to new treatments – without the side effects of current therapies – in adults.
The study was published in Nature Neuroscience.

Post Navigation